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ENERGY-DEPENDENT TRANSPORT THEORY
WITH A SEPARABLE KERNEL

by

H. A. Larson

ABSTRACT

The energy- and angle-dependent reflection and
transmission distributions for the slab-albedo problem
are obtained for scattering described by a separable ker-
nel. These solutions follow by relating the solution of the
nonlinear, invariant-imbedding integral equations to the
end point values of an inhomogeneous, linear Fredholm
integral equation. Use of a stochastic description also
permits determination of the mean number of collisions
suffered by a particle before it emerges from a face of
the slab. Numerical results are obtained for neutrons
incident upon a free gas.

I. INTRODUCTION

Techniques such as the discrete-ordinates,! Monte-Carlo,? and
spherical-harmonics methods® can be used to determine the energy-
dependent reflection and transmission distribution of particles in the
infinite-slab problem. Each of these methods, however, has limitations
for the solution of thin-slab problems. Furthermore, the neutron distri-
bution (or photon intensity) must be determined throughout the slab with
constraints provided at the region boundaries; if only the emerging distri-
butions are required, the solution in the interior need not be obtained if the
invariant-imbedding method is used. Invariant imbedding differs from the
other methods in that it concentrates on the particle fluxes crossing the
slab boundaries as a function of the changing thickness of the slab; numer-
iun‘y. this method is best suited for thinner slabs. To formulate the non-
m.ruéiﬁeremal equations characteristic of the method aﬁs:f 1

vch W or mf. of c:mm@aem‘ o be used.
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slab and the subsequent combination of this information into an OVe‘ra
ntains the reflection and transmission matrices. F
9 who related the one-SPee€

t values of

transfer matrix that co
A third approach was developed by Busbridge, ‘
coupled integral equations of invariant imbedding to the end poin

a linear integral equation.

This report extends the work of Busbridge’ for the transmission
and reflection distributions of a slab in order to do calculations where
cattering is described by a separable!®”!® kernel. It will be shown that
the distributions may be obtained from the solutions of two nonlinear,
coupled integral equations, which are similar to the X- and Y-equations

of Chandrasekhar.’

In energy-dependent theory, the X- and Y-type equations are ob-
tained only if the scattering kernel is assumed separable, as demonstrated
by Sobouti.!* Solutions of the coupled integral equations can be related to
the end point values of a single, inhomogeneous Fredholm integral equation.
For computations, it is advantageous to keep the slab thickness small in
order that the Neumann series for the Fredholm integral equation converge
with a reasonable number of terms. Hence the technique is best suited to

thin slabs.

The calculated reflection and transmission functions can also be
used to yield information about the mean number of scatterings experienced
by a neutron emerging from the slab. The work of Sobolev!®™!® explored this
quantity in radiative transfer, including the possibility of a frequency change
in the photon during scattering. In one-speed, neutron-transport theory,
Abu-Shumays'? showed that the mean number of collisions and the variance

~ could be simply determined by the use of a "stochastic" value for the mean
TR ver of secondaries in the solution of the transport equation. An exten-
-Shumays procedure to energy-dependent theory is presented
may be useful in the future development of tech-
ttering effects in experimental transmis-




models are developed that at least roughly approach the real scattering
laws while preserving the basic features of the scattering phenomenon.
Additionally, models that are purely artificial inventions aid in the develop-
ment of methods for solving the transport equation.?!

The usual approach with respect to the angular dependence of the
scattering kernel is to make an expansion in Legendre polynomials and
truncate the series. New theories are usually developed with only the
zeroth, or isotropic, Legendre term retained in the expansion; later de-
velopments of these theories may include a refined scattering kernel
accounting for (at least) linear anisotropic scattering. Any terms beyond
the linear term are usually ignored because they are considered relatively
unimportant for neutron-transport calculations at low energies and for non-
hydrogeneous materials.

With regard to energy dependence, the simplest artificial kernel is
the constant-cross-section approximation, which is equivalent to a one-
speed problem.??” More refined kernels are the Fermi kernel, which de-
scribes the scattering by a delta function in energy,?® and the degenerate
kernel, which describes the scattering in terms of a bilinear series.
Several kernels that are based on physical principles are available. Per-
haps the most widely used of these is the monatomic gas model, which has
also been used quite extensively to describe nongaseous moderators.!?
Other available models are based on the structure and dynamics of various
moderators,!?

The Fermi kernel represents one extreme in describing the energy
exchange in a scattering, since it represents very weak energy exchange
between moderator atoms and neutrons. The separable kernel, consisting
only of the first (isotropic) term of the degenerate kernel, represents the
other extreme; for this kernel, the medium has very strong thermalizing

- properties, virtually casting a neutron into equilibrium with the moderator
after a single collision.'®

Perhaps the most rewarding use of the degenerate kernel with a
given number of terms occurs when it is expanded in moments of the scat-
tering kernel. Then each successive term accounts exactly for a higher
- moment of the scattering kernel.’® (In contrast to this, a polynomial ex-

model will represent each moment only as accurately as tha e




II. THEORETICAL DEVELOPMENT

A. Basic Equations

The basic equation describing neutron motion is the transport equa-
tion which we shall assume has the simplified form?°

oo i y
[Zt(e) x+l:| Ry Ty =2 i o)

& 1 ¥(0, ey, mp = x, e, jh')
f de' f il Bt ve; ) ; (1)
0 -1

Zt(e')

where ¥(0, €9, o = X, €, k) is the collision density at energy ¢ (normalized
to units of kT) and direction cos~! . The total macroscopic cross section
of the medium is Zt(e). Equation 1 is to be solved subject to the boundary
conditions for the slab of thickness T

1
Y(ov €o,Ho ~ 0, €, l‘") = ?.E 6(3' ¢o) 6(“"”‘0)1 0sp=1l;

LSO e O TR U [ S o ST

The one-term kernel describing the scattering from state (e',u') to state
(e, ) is specified by the relation

Zg(e')Zs(e)
=

= 3 M(e)

mmmumn~averaged scattering cross section for
ized Maxwellian distribution. The form of the
balance relation and specifically pre-
B :



i -Z (e)/u. dpo M(eo)Zs(eo)
(T, e, k) = s(e)e t fmdeof bo Zy(eg)/ Mo - Zt( )/

< Lo, e, w)¥(T, €0, o) - ¥(T, €, w)(T, €, o). (4)

The functions {(T, e,u) and @(T, €, ) are defined in a manner similar to their
description in Ref. 7:

§(T, e,n) = Zg(e) + M%) '[ow deg ‘/0‘1 dpoR(T, €, ; €9, o) Z5(e0)M(eo); (5)

) 1
o(T, e, H) = I\%e)f deof duoT(T, €, W; €0, F"o)zs(eo)M(eo)- (6)
0 0

The transmission function T(T, €, u; €, ko) de dp is defined as the probability
that a particle incident upon the slab face at x = 0 in a direction whose
cosine is W, and with energy €, will emerge at the slab face at x = T with
a direction in du about p and an energy in de about €. An analogous defi-
nition holds for the reflection function given by R(T, €, i; €q, ko) de di.

B. Emergent Collision Densities and Linear Integral Equation

The reflection and transmission functions are very simply related to
the collision densities at the slab surfaces by the equations

nZt(e b
R{E, & i egally) = ztt(a(),) ¥(0, eq, Ko = 0, €, -K) [(70)
and
wZt(e)

n

T(T, e, H; eg, ko)

-——z—j ¥(0, g, g = T, €, H), (8)

We nbnm th-t u(, u,M and (T, e, 1) num
of t ctic Ch




and where the kernel K, is defined by

and
T(T, €, K; €, ko) = eXP['zt(eo)/“'o]é(e - gg) 8(H - M)

M(e)[(T, €, B)Y(T, €0, Ho) - ¥(T, €, H)o(T, €, l‘l‘o):l 5 (10)
20 { Tt(eo)/Mo - Zt(e)/m

It is seen from Eqs. 9 and 10 that R and T satisfy the reciprocity relations’

woM(e0)R(T, €, i €gs o) = KM(e)R(T, €q. Wo; €, H)
and
woM(eg) T(T, €, W €, o) = HM(e)T(T, €9, Koi €, 1),

which, through use of Egs. 7 and 8, agree with the reciprocity relations
given in Ref. 25.

Equations 3 and 4 are the coupled integral equations that describe
the diffuse reflection and transmission properties of the slab. The equations
correctly reduce to the single nonlinear equation describing half-space re-
flection, since the function (=, ¢, k) is zero. Furthermore, it can be shown?®
that the reduced equation in terms of {(, ¢, ) can be cast into the form of
the equation for the H-function of Chandrasekhar.®

Equations 3 and 4 are solved by considering the linear Fredholm
equation

(1-L)x {3(t, e, 1)} = expl-Ty(e)x/k], (11)

where the operator L, {J(t,e,u)}is defined as

s
Ly{u(t, e, u)} = f Ky(Jt-x]) I(t, e, p) at,
3 ()

¥
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"auxiliary function." It will be shown below that J(0, e,u) and J(T, ¢, k)
may be related directly to (T, e,n) and (T, ¢, ), respectively.

To establish the connection between Eqs. 3 and 4 and the auxiliary
equation, two lemmas are used.

Lemma 1. Let

B e - J(o e, 1) f” f —M(eo 52 (e0)T(x, €0, o)
J(T ) “')‘/‘ f—M(eo 2(e0)T(T - x, g, Ho).

(1- L)y Fu(t, e, 1)} = 7(0, €, B)Ky(x) - J(T, €, B)Ky(T - x).

Then

Proof: This lemma is proved, in part, by using Eqgs. 11 and 12 in Eq. 13
to observe that

1
Ky(x) = -Z%f dcof %M(eo)ﬂé(eo)ﬂx-eo-w)
0 0
ﬁf deof ‘—M(Go)): (Go)f Kl("‘ x|) J(t, eq, o) dt

1
=(I-L)x {il'ﬁ[ deg .[ %? M(eq)T%(e0)I(t, ‘o,ﬂo)}.

\W b’h‘p 8 aasnmphshgd hy an mterchange of ﬂm npdar of inte-

£
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Proof: The proof is given in Appendix A.

The following theorem may now be established:

Theorem

Let J(0, e, #) and J(T, ¢, k) be solutions of the linear Fredholm equa-
tion (Eq. 11). Then a solution of the nonlinear, coupled integral Egs. 3 and 4

is given by

£5(e)3(0, €, 1) (14)

¥(T, e, 1)

and

o(T, e, 1) = Zg(e)I(T, e, 1)- (15)
Proof: Lemmas 1 and 2 give

(I'L)x {Fl(t: G,H:) - Fz(tv €, u)} =0,

since Ly is a linear operator. As in Ref. 9, it may be shown that the func-
tion in braces is zero and hence

dI(x, e, 1) | Zt(e) 30, e, ) [ ! du,
—T) = Jxen) = '(—zf—) deo f o M(eo)Z%(e0)I(x, €, ko)
0 0

© ]d
£ J('r;jl, ) ‘/o. deg ‘/0- I&loo M(eo)Z(e0)I(T - x, 85, o) (16)

It is now convenient to apply the transform

3 e
Ela e i) = f e 5%J(x, e, p) dx e
" 0 &
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it can then be shown that

(Eq)him T
[ztuoo - t:e)]g[ e 60), e,p.] = J(0, e, k)JI(0, eq; o) - J(T, e, )T(T, g, ko)

Mo
and
Ze(e) T Zt(eo)
|22 2 LB ]300, 600000, e, ) - 3 €007, e )

At this point, the last two equations are multiplied by (2Zu) 'M(e)Zg(e) and
integrated over € and . The proof of the theorem is then completed with
the observation that

J(0, e, -u) = explZt(e)T/uli(r, e, u), (19)
a result which is derived in Appendix B.

Solution of Eq. 11 provides a unique answer which, through Eqs. 14,
15, 9, and 10, provides unique transmission and reflection functions whose
accuracy depends only upon the accuracy with which Eq. 11 is solved.
Direct numerical solution of Eqs. 3 and 4, however, does not necessarily
provide a unique solution for {(T, e,n) and ¢(T, e,k). The uniqueness of
the solutions is discussed by Busbridge’ for the one-speed case and is
treated quite extensively by Mullikin.?® It is sufficient to say here, how-
ever, that there are constraint equations®’ that could be applied to the solu-
tions for (T, e,u) and (T, ¢, ). These constraints may be given a physical
interpretation, which leads to their immediate derivation.?”:2®

»

C. Generating Functions and the Reflection and Transmission Functions

As indicated previously, it is also of interest to obtain information
on the mean number of collisions suffered by an incident neutron before it
is reflected or transmitted through the slab. Following the approach of
Abu-Shumays,'? the nth-generation transmission, Tp(T, €, i; €g, o) de di, is
defined as the conditional probability that a particle incident upon the slab
face at x = 0 m a direction whose cosine is K, and with energy e, will,
sions, emerge from the slab face at x = T in a direc-
&hofnt " a.nd whoae( energy is in de about e.
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and

@

T(r, ¢, bi € boi€) = EPTn(T, € ki €0, o), (21)
n=o0

so that the reflected and transmitted density functions of Egs. 9 and 10

become

R(T, €, K; €0) Ho) = R(T, €, 1; €9, bos 1) (22)

and
T(T, €, 1; €0 o) = T(T, €, W; €o, o3 1). (23)

In precisely the same manner as in Ref. 19, the invariant-imbedding
equations can be manipulated to show that the reflected and transmitted den-
sity functions are transformed into the corresponding density-generating
functions by replacing the scattering kernel by a "stochastic scattering
kernel." For the separable kernel, this stochastic scattering kernel con-
sists of the replacement of Zg(e) in Eq. 2 by +/&Zg(e). The invariant-
imbedding integral equations for the functions {(T, e,p; &) and ¢(T, e, u; §)
can then be written in a form similar to Eqs. 3 and 4 after replacement of
Ts(e) by vEZg(e). In this case, the generating functions R(T, e, u; €, fo; §)
and T(T, €, ; €y, ko, §) obey Eqs. 9 and 10, with (7, ¢, ) and ¢(T, ¢, ) re-
placed by ¥(7, e, 1;E) and @(T, €, u; §), respectively. The functions (T, ¢, u; §)
and (T, e,p;§) satisfy equations similar to Eqs. 14 and 15:

VEZs(€)3(0, ¢, 1;8) (24)

§(T, e, 1; )

and

n

®(T, e, 1:8) = VEIg(e)I(T, €, 1;E). (25)

Here J(7,¢,u;§) satisfies auxiliary Eq. 11 with a kernel Ki(M; E) of E
now defined by , 20

K = g,




mR (T, €, u; €, Ho) Saz R(T, € i e, boi §)g)
: 27
R(T, e, W; €q, Hp; 1) i

Rm(T, €, u; €, Wo)

and

m 2 (Tre, 1t e )
0 o) ko) 5 T(T, €, 4; €qs L.to;§)|g .

2

- (B ierlsiey o o) (28)

T (56, i ep, a)

Further, the variance in each of the quantities can be determined from

32
32 R(T, €, W; €g, Ho; §)|§:1

;11'_(111'_-1) = R(T, €, Wi €g, Hg; 1) (29)

and
-aa?zz- T(T, €, W; €, Ho; §)|§=1

nyfm; - 1) = T(T, €, 1; g, boi 1) (39)
through the relations 3

Var(fiy) = ng(ng-1) + 0, - 2 (31)
andl"

Var(fg) = ng(ng- 1) + g - 0. (32)

nal Procedure

15
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solution of Eq. 11, however, allows the determination of the reflection and
transmission functions at specified angles and energies, instead of angles
and energies restricted to a mesh chosen strictly for best numerical evalu-
ation of the integrals.

One way to numerically solve Eq. 11 is to expand the function J(T, €, W)
in a truncated power series given by

N
J(T, e, u) = z ap(e, p)t™ (33)
n=o0
Equation 33 allows us to write Eq. 12 as
N
L e, 1)} = Z an(e, u)In(x, 7). (34)

n=o

where
.
Pz, 7)) = f Ki( ]t - x|) £ dt.
0

We recognize that In(x, T) can now be explicitly determined by parts inte-
grations since, from e 13,

Kall) = (-1 g5 Knia(1).

At this point we note that the straightforward substitution of Eq. 33
into Eq. 11 will define a set of N + 1 equations in the coefficients aj(e, ),
whose order depends upon the order of the polynomial expansion in Eq. 33.

Determination of the apy(e, u) leads directly to J(T, €,u). As the size of

the slab increases, however, one is forced to increase N to nb’bmn the




We now substitute Eq. 35 into Eq. 11 to give

N
0%, Bortl) = z (e, p) Z bi(x, T)yik + exp[-Z¢(e x/u-]
k=1 n=o i=0
and rearrange to obtain
KN
Wea Gl = z Z bi(x, T)I(yik, €, 1) + exp[-Z¢(e x/u] (36)
k=1 i=0
where
N
Hyiw €1) = ) apelew)yB, i=01, ., Nk=12 .., K
n=o

Evaluation of Eq. 36 at each of the prescribed K(N+1) points of the slab
and provision of coupling between the subslabs by setting J(ypy, €, K) =
J(Yok+1, €, 1) enables us to find a vector J(T, e, ) across the slab (0, T).

The approach of Mayers was chosen because the straightforward
substitution of Eq. 33 into Eq. 11 led to the inversion of an ill-conditioned
matrix and also showed no significant decrease in computer running time
when compared with the method of Eq. 36. We also note that the angle and
energy dependence in Eq. 36 reside entirely in the exponential, so that to
calculate J(T,e,u) for various values of ¢ amnd K, we merely reiterate the
equation with the matrix composed of the bki(x' 7) for the slab.

Numerical differentiations as indicated by Eqs. 27-30 were per-
formed to determine the mean number of collisions and the variance.
Since the order of the error in the derivative when using a two-point dif-
ferencing scheme is of the order of the mesh spacing, and since this was
assumed to be 0.01 in the calculations, a two-point difference for the first

derivative and a three-point difference for the second derivative were used.

Thus, when variance calculations were desired, three solutions of the
integral eq n were made. An extension of the calculational procedure
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] results for the energy-dependent theory

i Numerica '
el gl ss section Ig(e) given'? by the zeroth

were obtained using the scattering cro

moment of the scattering kernel for a free gas,

zg(e) = Z% [(2a6+1) erf (V&) + 2 /AeTme A¢), (37

where A is the ratio of scatterer to neutron mass and Zg is the free atom

cross section. The constant T in Eq. 2 is given by

1 1/2
-Z— = Zf(l-l-z) ;

where the values of Iy are given in Table I.

TABLE I. Average Energy and Energy at Maximum of Distribution for
Neutrons Reflected and Transmitted in a Nonabsorbing Free Gas,
Varying Mass Number A (eg = 1.0, p = 1.0, g ='1.0, TZ¢ = 1/3)

Reflection Transmission
A B /cm " B e & e¥
1 0.00163 1.827 £ 0.007 0.736 £ 0.004 1.830 £ 0.006 0.745 £ 0.004
4 1.88 x 107° 1.967 £ 0.026 0.874 £ 0.016 1.967 £ 0.025 0.877 £ 0.015
7 0.06280 1.986  0.020 0.922 £ 0.013 1.987 £ 0.020 0.924 £ 0.013
12 0.3699 1.994 + 0.014 0953807000 1.994 £ 0.014 0.953 £ 0,009
18 3.4031 1.996 + 0.011 0.968 = 0.007 1,996 + 0,001 0.968 * 0.007

The calculations were performed for thin slabs, the observed quan-
tities being the average energy and the most probable energy for neutrons
that were reflected and transmitted through the slabs at various angles. To
find the average exit energy, it was observed that the data would be fitted
very well by a least-squares fit of the exit-energy profiles to the three-
parameter functions given by

R(T, &, i 60, ko) = Cre‘,;/(il‘-e:) exp( = ;) - (38)

€r - ef

T(T, ¢, b; €g, o) = gtg':/.(‘t'ﬁz) e;:p('t-s ) 4
. ’ .",_q. A
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Table I shows sample values of least-squares-fitted coefficients of
€ and e* for a conservative system. The heavier target materials produce
emergent distributions that are not far from the Maxwellian in shape. As
A decreases, the departure from Maxwellian is quite evident, but the shape
is very easily fitted to functions of the form of Eqs. 38 and 39. The error

range quoted in Table I is a consequence of the use of a nonlinear least-
squares-fitting routine.

Calculations were also made of € and e* for reflected and trans-
mitted neutrons emergent from nonabsorbing mass-18 gas slabs of varying
thickness. The results are shown in Table II, where it was observed that
for a given mass number, the average energy of the emergent neutrons
approaches the average target energy with increasing slab thickness. This
is reasonable, since an increasing slab thickness implies a larger number
of collisions, on the average, and hence neutrons escaping from a surface
should be nearer equilibrium with the target atoms.

TABLE II. Average Energy and Energy at Maximum

of Distribution for Neutrons Reflected and Transmitted

in a Nonabsorbing Free Gas, Varying Slab Thickness
(ARSI R 0 SCA= 10D il = 10

Reflection Transmission

TZ¢ er ek €t ef
1/6 1.996 0.965 1.996 0.965
1/3 1.996 0.968 1.996 0.968
2/3 1.997 0.973 s 1.997 0.975
1 1.997 0.977 1.997 0.981
2 1.998 0.986 1.999 0.996
5 1.999 0.996 2.002 1.016

Figure 1 illustrates the mean number of collisions experienced by
a neutron during its migration in a nonabsorbing slab of mass-18 gas of
varying thickness. The value of T, for reflected neutrons increases
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otonically and approaches infinity as the slab thickness becomes 1i‘;'nfinite;
:lzlilmilar result has been explicitly derived for one-speed problems. ?‘he
value of T; is seen to increase more rapidly than [, for small T, and like-

wise increases without bound as the slab thickness increases.

Tables III and IV show the variation with anle of € and. e¢* for neu-
trons reflected and transmitted through conservatively scattering slabs }c:f
thickness TZf = 1/3 and 1, respectively, for a scatterer of A = 18. The
values of & and e* show little dependence upon T for TZf> .1/3, but the
mean number of collisions before emergence varies substantially. For a
given angle of incidence, the average energy of.neutrons refle.cted or trans-
mitted through the slab increases with decreasing K. In particular, the -
emergent distribution for the grazing angle appears to be nearly Maxwellian

TABLE III. Average Energy and Energy at Maximum of Distribution for Neutrons
Reflected and Transmitted in a Nonabsorbing Free-gas Slab of TZ = 1/3,
and Average Number of Collisions Suffered in Transit; A = 18, ¢, = 1

Ho n %5 ek o Var(fi,) Tt ek T Var(fig)
L.0 1.0 1.996 0.968 1.537 0.900 1.996 0.968 1,543 0.909
1.0 0.5 IS0 7= 0,973 1.534 0.895 1,997 0.974 1.546 0:912
1.0 0.02546 1.999 1.000 1.467 02799 2.000 1.001 1.547 0.918
150 0.005 2.000 1.000 1.463 0791 2.000 1.000 1.547 0.916
0.5 1.0 1.996 0.967 1.534 0.895 1.996 0.969 1.546 0.912
0.5 0.5 1,997 0.973 1.529 0.887 el (5 ) 1.55% 0.921
(0% 0.02546 2.000 0.999 1.434 0.746 2.000 1.001 1.595 0.983
Ok 0.005 2.000 1.000 1.428 (0} 7l 2.000 1.000 1.596 0.982
0.02546 1.0 1.996 0.964 1.467 0.799 1.997 0973 1.547 0.917
0.02546 0.5 1.996 0.966 1.434 0.747 1997 =0 988 1.594 0.981
0.02546 0.02546 1.998 0.982 1.166 Q272 2.003 1,027 2.647 1.338

TABLE IV. Average Energy and Energy at Maximum of Distribution for Neutrons
Reflected and Transmitted in a Nonabsorbing Free-gas Slab of 7Z¢ = 1,
and Average Number of Collisions Suffered in Transit; A = 18, € = 1

Ko [ €. eX i, A o 5,
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in shape. This correlates well with the result!® that the neutron-energy
spectrum for neutrons emergent at the grazing angle is Maxwellian for the
Milne problem with a degenerate kernel. It would appear that the same is
approximately true for the slab-albedo problem, even if the slab is quite
thin. Although these conclusions have been reached for an initial energy

€y near unity, they are expected to be approximately valid for any e, be-
cause the separable kernel represents a medium with very strong thermal-
izing properties.!?

Table V is similar to Table III, except that the data are for a scat-
terer of A = 1. The average number of collisions required to traverse the
slab increases slightly when compared with the A = 18 case of Table III;
however, € and ¢* do not indicate emerging spectra as nearly Maxwellian
as the A = 18 case except at grazing angles. Figure 2 clearly shows the
approach to Maxwellian as the exit angle approaches the grazing angle for
a scatterer with A = 1. The leakage spectrum is sub-Maxwellian, a result
consistent with the energy of the incident beam, ¢, = 1. To examine the
emerging spectrum as a function of energy, the reflection function was cal-
culated using the ¢(T, e, p) and (T, e, ) functions, sample values of which
are given in Table VI.

TABLE V. Average Energy and Energy at Maximum of Distribution for Neutrons
Reflected and Transmitted in a Nonabsorbing Free-gas Slab of TZf = 1/3.
and Average Number of Collisions Suffered in Transit; A = 1, ¢y = 1

g n e G . Var(fip) G e n; Var(f)
1.0 1.0 1,827 0.736 1.629 1122 19830' 7 0,745 = 17637 1.135
1.0 0.5 15850 . 0F799+7 1.625 1,115 1.857 0.814 1.640 1.138
1.0 0.02546 1.997 0.995 1.540 0.988‘ 2.007 1,008 1.646 1.155
0.5 1) 1R2ber 20732 o 1.625 1.085 1.831 0.749 1.640 1.087
035 o5 1:840: 0 =0,79 200 17617 1.076 1.859 0.821 1.648  0.999
0.5 0.02546 1.992 0.989 1.496 0.893 20013 41,014 L 1.238
0.02546 1.0 181140683 154y 0.995 1.846 0.798 1.646 1.139
0.02546 0.5 1.841 0.741 1.506 0.930 1.867 0.871 1.690 1.217
0.02546 0.02546 1.895 0.856 1.194 0.340 2.151. 1,265 :.2.769 1.815




™~
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TABLE VI. ¥(7, ¢,u) and ¢(T, ¢, ) as Functions of u;
1% = 1/3 and B = 0.0

g =1 Br-=h
m y(T, e, 1) (T, €, 1) ¥(T, €, 1) (T, e, 1)
1.0 0.0034262 0.0025543 0.0029232 0.0022789
0.9 0.0034092 0.0024609 0.0029110 0.0022076
0.8 0.0033898 0.0023494 0.0028961 0.0021220
0T 0.0033651 0.0022142 0.0028775 0.0020173
0.6 0.0033337 0.0020472 0.0028536 0.0018864
05 0.0032923 0.0018368 0.0028220 0.0017189
0.4 0.0032358 0.0015656 0.0027782 0.0014982
0s3 0.0031540 0.0012100 0.0027137 0.0011984
0.2 0.0030267 0.0007498 0.0026100 0.0007859
0.1 0.0028115 0.0002526 0.0024234 0.0002819

In Tables III-V, values of € and ef for k = 0.02546 occasionally
exceed those for a Maxwellian distribution. This is especially the case for
A =1 and p, = 0.02546 in Table V. Because the energy of the incident
neutrons is €, = 1 in every case, it is physically expected that the values
of €& and e} should never exceed 2 and 1, respectively. Thus it must be
admitted that certain numerical inaccuracies do exist in the procedure
used, and these numerical difficulties are magnified for very low values
of u, pg, A, and 7. Numerical difficulties for small values of u were
also encountered by Mayers?® in one-speed theory, because errors in-
creased sharply when the nonhomogeneous term of Eq. 11 became small.

Tables IIl and V also show variance calculations for the mean number
of scatterings in reflection and transmission. The variance increases rapidly
with the number of collisions, a result also noted by Abu-Shumays!? in one-
speed calculations. The large variances are a consequence of the medium
being nonabsorbing; in fact, Abu-Shumays'? has shown for one-speed theory
that, in the limit of vanishing absorption, the variance of the mean number
of collisions for neutrons reflected from a half-space is unbounded.

The behavior of the neutron transmis sion and reflection was also
investigated when the parameters o and B were varied in the absorption
law 2,(e) = pe™Y It was found that € and e* for neutrons reflected and
transmitted through the slab with A = 18 remained essentially constant
over a range 0.022 < B < 0.38 for a given y and p, and o = 1/2; this in-
dicates the negligible spectral effect of this type of absorption in a finite
medium of a heavy scatterer, In contrast to these ult: ing a constant

value of B = 0.022 and increasin ved that inished
: g @ from 0 to 2 , dim
monotonically from 1.996 to 1.992 for € e & 5 & ] ‘

LTI = 1/3, thus indicating slight softening
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The behavior of the average number of collisions when absorption
is present is just opposite to that of the average energies; the values of T
and nt are quite insensitive to the type of absorption used for a range
0 s o = 2, but change considerably with B. Figure 3 shows the dependence
upon B of the average number of collisions suffered by a neutron traversing
a slab of width TZ¢ = 1/3 and A = 18. The average number of collisions
suffered by neutrons before emerging decreases with increasing absorption,
as might be expected from physical reasoning.

Fig. 3

Average Number of Collisions Suffered
by Reflected and Transmitted Neutrons
for Absorption Law Z,(e) = B/4/.
ANL Neg. No. 103-A9049.

< 150

IV. SUMMARY

A method for the calculation of energy- and angle-dependent emer-
gent distributions from thin slabs has been developed. The method is appli-
cable to slabs of any thickness, although a considerable increase in computer
time is required for slab thicknesses of mone than a few mean free paths.

An attempt was made to extend the theoretical development to an
N-term degenerate kernel, such as that considered by Shapiroand Corngold,“”l
but the analysis failed due to problems associated with the noncommutability
of the matrices involved. Thus, use of the analysis to treat transport prob-

lems involving a realistic, nonseparable kernel is presently constrained by
the assumptions necessary to express the kernel in separable form.
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APPENDIX A

Proof of Lemma 2

Define C(4) as that class of functions which are continuous on 0=
x <71, 0(nx"') as x = 0+, and O[In (7 -x)°1] as x > 7=, “Then directly from
Theorem 32.1 of Ref. 9, we quote the following:

T
Lemma A.l. For o(x) € C(4), and H(t) = f ¢@(u)du, and 0 < x < T,
———— ()

fo : Lefo(u)} dt = Ly{H(t)} - Lo{H(t)} + [Ka(7 - x) - Ka(1)] H(x), (A.1)

where L¢ and K; are defined in Eqs. 12 and 13, respectively. We shall use
Lemma A.l to help establish Lemma 2 (Sec. II). We define G (t) as the
Neumann solution of

(1- L) {G,(t)} = B'(x) + S(0)K,(x) - S(T)K,(T-x), (A.2)

where we have suppressed explicit reference to all ¢ and u dependence in
the functions, where

(1-L)x{s(t)} = B(x), (A.3)

and where B(x) € C(4). If we define
nX T
F(x) =j; Gp(t) dt - S(x) + S(0) (A.4)

and subsequently show that F(x) = 0, we have S'(x) = Gn(x); the 5

7 _ 7 X = ; n Lemma 2

iﬂ a direct consequence of Eq. A.2 if we identify S(x) = J(x,€,u) and B(x)
o[- lkq/u]. Therefore, we shall prove that F(x) = 0. 225 S

rove that F(x) = 0, we first note that for the
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We next note from Eq. A.3 that
(T-L){S(t)} = B(x) - B(0) + S(0) - L4{S(t)}. (A.6)
Also, from Eq. 12,
Lx(S(0)} = 8(0)Lx{1} = S(0)[2K,(0) - Ka(x) - Ky (T - %)),
which reduces to the special case
Lo{s(0)} = S(0)[K2(0) - Kz(1)].
The last two results, when combined, give
(I-L)x{S(0)} = S(0)[1 - Kz(0)+Ka(x)+Ka(1 - x) - Ky(7)] - Lo{S(0)}. (A.7)

The application of the Operator (I- L)y to Eq. A.4 and subsequent use of the
Egs. A.5-A.7 produce

(@-L){F ()} = [Ka(r - x) - Kz(1)] F(T) - Lo{F(t)} = AK,(7-x) - B, (A.8)
where A = F(1) and B = K,(7)F(T) - Lo{F(t)}
Now, using the nomenclature of Ref. 9, we note that the method of

successive substitutions applied to Eq. A.3 yields a Neumann series which
we shall denote by

S(x) = ) LY(B(),
V=0

which, if it converges to a solution of Eq. A.3, is called the Neumann solu-
tion. Naegulary and sufficient conditions for the ex1stence of the Neumann
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Evaluating Eq. A.9 for x = 7 and using the definition A = F(7) give
A[l - Fy(7)] + BFg(7) = 0. (A.11)

From Eq. A.9 we note that Fp(x) = F(T - x), which implies that F,(0) =
F,(t). A solution of Eqs. A.10 and A.ll is thus given by

A[1-F(1)+F,(0)] = o. (A.12)

It is shown in Ref. 9 that 1 - Fy(x) + F1(0) # 0 if K(0) < 1/2. Thus
Eq. A.12 demands that A = 0; then Eq. A.10 demands that B = 0. Since
both A = 0 and B = 0, it follows from Eq. A.9 that F(x) = 0, and the lemma
is proved.
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APPENDIX B
A Symmetry Proof

To derive Eqs. 17 and 18, we define the inner product
i

(U V) = [ U@®V() at.
0

Then, because of the symmetry of the kernel of Eq. 12,
(U, L.{V}) = (v,L.{U}).

Now write Eq. 11 as
Ti(t) = Lo{Tit)} + By(r),

where Bj(t) = exp[-Z¢(ej)7/ui] and i = 1, 2 denotes different values of the
variables ¢ and u. We can then write

(31, 32) = (31, LelT2(t")}) + (31, By)
and

(32, 31) = (T2, LeTa(t)}) + (32, By).

Now, if the integral exists, we have (J;,J;) = (J2,J,) and

(30, LelTa(e)}) = (Lel (89}, 32) = (0, Lelna(e)}),
so it follows that

(J1.Bz) = (Jz, Bi). (B.1)

7 follows directly from Eq. B.1. If we letJ; = J(1-1) and B, =
1, we obtain Eq. 18 after a change of variables.

17
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Evaluating Eq. 11 at x = 7 and applying the above procedure while using
Eq. 18, it may also be shown that

© 1
il d z

(B.3)

Equation 19 follows directly from a comparison of Eqs. B.2 and B.3.
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